SYSTRAN s'est engagé à développer et à fournir des services de traduction de pointe depuis plus de 50 ans. En 2016, SYSTRAN s'est associé à Harvard NLP pour créer OpenNMT – le premier cadre de traduction automatique neuronale open source au monde. Fournir à la fois un Basé sur PyTorch et TensorFlow OpenNMT se classe constamment en première position pour toutes les mesures Tâche partagée d'efficacité du GTNO 2020.
Unlike many other players in the neural machine translation space, SYSTRAN both maintains OpenNMT and provides B2B secure, proven translation solutions for companies using its custom-built OpenNMT-based platform. Currently, OpenNMT has over 500 publications, 3,000 GitHub stars, and several major awards, making it an incredibly popular and powerful framework in the NMT industry.
This incredibly powerful and dynamic OpenNMT core allows SYSTRAN to deliver unparalleled value and best-of-breed base model quality. Users can work in a variety of environments, and SYSTRAN provides the API, interfaces, plug-ins, and tools necessary to facilitate dynamic and conductive language communications. By layering its solution upon an open-source core, SYSTRAN allows for nearly unlimited customizability and flexibility to creators and end-users, earning them a strong market position and a healthy connection to businesses and LSPs ? paving the way for SYSTRAN Model Studio?s game-changing business model.
How the Model Studio Works
SYSTRAN partnered with OVH, a global cloud provider, to provide a state-of-the-art responsible solution while eliminating wasteful compute cycles. All training begins from pre-built SYSTRAN models, either generic or domain-specific. There is no need to build a translation model from scratch. Rather, you are incrementally enhancing existing models on the platform which have already been built and perfected by language experts.
SYSTRAN has done much of the upfront work to get you started, but even optimizing generic and pre-existing models is much easier thanks to SYSTRAN?s game-changing features.
Data Preparation
Upload your bilingual or monolingual in-domain corpus (Spanish-English for example) into the system?s data repository to prepare the model for training. The data will remain completely secure during the training process and will not be used for purposes outside your own model training. SYSTRAN?s proprietary technologies are used to clean and prepare the data for neural model training.
Model Training
Construire un modèle de traduction à partir de zéro est une tâche ardue. SYSTRAN Model Studio vous permet de choisir parmi la grande traduction de SYSTRAN catalogue de modèles pour le modèle de point de départ que vous allez améliorer avec vos propres données spécifiques au domaine afin de vous spécialiser pour vos propres besoins de traduction.
By specializing an already trained SYSTRAN model, you will benefit from SYSTRAN?s proprietary technologies, such as embedded UD Sampling, Augmentation, Filtering, Noising and Tokenization.
Evaluation and Publication
Évaluez l’évolution de votre modèle spécialisé à chaque itération de formation avec le module de notation de SYSTRAN Model Studio. Dans SYSTRAN Model Studio, il est facile de comparer les Évolution du score UEBL de vos modèles sur plus de 50 jeux d’essai d’or sélectionnés par les scientifiques de données de SYSTRAN et classés par domaines. Vous pouvez également ajouter votre propre jeu de tests pour vérifier la progression du modèle sur votre domaine très spécifique.