Integrating Domain Terminology into Neural Machine Translation [PDF]

Research Papers SYSTRAN

This paper extends existing work on terminology integration into Neural Machine Translation, a common industrial practice to dynamically adapt translation to a specific domain.

Our method, based on the use of placeholders complemented with morphosyntactic annotation, efficiently taps into the ability of the neural network to deal with symbolic knowledge to surpass the surface generalization shown by alternative techniques.

We compare our approach to state-of-the-art systems and benchmark them through a well-defined evaluation framework, focusing on actual application of terminology and not just on the overall performance.

Results indicate the suitability of our method in the use-case where terminology is used in a system trained on generic data only.

Elise MichonJosep Maria CregoJean Senellart

Read more

 

Proceedings of the 28th International Conference on Computational Linguistics, December 2020

Author
Alan, Machine Translation Expert (US Market)
Newsletter Sign-Up
Find all the news and the latest technologies. A magazine designed by SYSTRAN