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Egor Akhanov, Patrice Brunelle, Aurélien Coquard, Yongchao Deng, Satoshi Enoue, Chiyo Geiss,
Joshua Johanson, Ardas Khalsa, Raoum Khiari, Byeongil Ko, Catherine Kobus,

Jean Lorieux, Leidiana Martins, Dang-Chuan Nguyen, Alexandra Priori, Thomas Riccardi,
Natalia Segal, Christophe Servan, Cyril Tiquet, Bo Wang, Jin Yang, Dakun Zhang, Jing Zhou

SYSTRAN
firstname.lastname@systrangroup.com

Abstract

Since the first online demonstration of
Neural Machine Translation (NMT) by
LISA (Bahdanau et al., 2014), NMT de-
velopment has recently moved from lab-
oratory to production systems as demon-
strated by several entities announcing roll-
out of NMT engines to replace their ex-
isting technologies. NMT systems have
a large number of training configurations
and the training process of such sys-
tems is usually very long, often a few
weeks, so role of experimentation is crit-
ical and important to share. In this work,
we present our approach to production-
ready systems simultaneously with release
of online demonstrators covering a large
variety of languages (12 languages, for
32 language pairs). We explore different
practical choices: an efficient and evolu-
tive open-source framework; data prepara-
tion; network architecture; additional im-
plemented features; tuning for production;
etc. We discuss about evaluation method-
ology, present our first findings and we fi-
nally outline further work.

Our ultimate goal is to share our expertise
to build competitive production systems
for ”generic” translation. We aim at con-
tributing to set up a collaborative frame-
work to speed-up adoption of the technol-
ogy, foster further research efforts and en-
able the delivery and adoption to/by in-
dustry of use-case specific engines inte-
grated in real production workflows. Mas-
tering of the technology would allow us
to build translation engines suited for par-
ticular needs, outperforming current sim-
plest/uniform systems.

1 Introduction

Neural MT has recently achieved state-of-the-
art performance in several large-scale translation
tasks. As a result, the deep learning approach to
MT has received exponential attention, not only
by the MT research community but by a growing
number of private entities, that begin to include
NMT engines in their production systems.

In the last decade, several open-source MT
toolkits have emerged—Moses (Koehn et al.,
2007) is probably the best-known out-of-the-
box MT system—coexisting with commercial al-
ternatives, though lowering the entry barriers
and bringing new opportunities on both research
and business areas. Following this direction, our
NMT system is based on the open-source project
seq2seq-attn1 initiated by the Harvard NLP
group2 with the main contributor Yoon Kim. We
are contributing to the project by sharing several
features described in this technical report, which
are available to the MT community.

Neural MT systems have the ability to directly
model, in an end-to-end fashion, the association
from an input text (in a source language) to its
translation counterpart (in a target language). A
major strength of Neural MT lies in that all the
necessary knowledge, such as syntactic and se-
mantic information, is learned by taking the global
sentence context into consideration when mod-
eling translation. However, Neural MT engines
are known to be computationally very expen-
sive, sometimes needing for several weeks to ac-
complish the training phase, even making use of
cutting-edge hardware to accelerate computations.
Since our interest is for a large variety of lan-
guages, and that based on our long experience with
machine translation, we do not believe that a one-
fits-all approach would work optimally for lan-

1https://github.com/harvardnlp/
seq2seq-attn

2http://nlp.seas.harvard.edu



guages as different as Korean, Arabic, Spanish or
Russian, we did run hundreds of experiments, and
particularily explored language specific behaviors.
One of our goal would indeed be to be able to in-
ject existing language knowledge in the training
process.

In this work we share our recipes and experi-
ence to build our first generation of production-
ready systems for “generic” translation, setting a
starting point to build specialized systems. We also
report on extending the baseline NMT engine with
several features that in some cases increase perfor-
mance accuracy and/or efficiency while for some
others are boosting the learning curve, and/or
model speed. As a machine translation company,
in addition to decoding accuracy for “generic do-
main”, we also pay special attention to features
such as:

• Training time

• Customization possibility: user terminology,
domain adaptation

• Preserving and leveraging internal format
tags and misc placeholders

• Practical integration in business applications:
for instance online translation box, but also
translation batch utilities, post-editing envi-
ronment...

• Multiple deployment environments: cloud-
based, customer-hosted environment or em-
bedded for mobile applications

• etc

More important than unique and uniform trans-
lation options, or reaching state-of-the-art research
systems, our focus is to reveal language specific
settings, and practical tricks to deliver this tech-
nology to the largest number of users.

The remaining of this report is as follows: Sec-
tion 2 covers basic details of the NMT system em-
ployed in this work. Description of the transla-
tion resources are given in section 3. We report on
the different experiments for trying to improve the
system by guiding the training process in section
4 and section 5, we discuss about performance.
In section 6 and 7, we report on evaluation of the
models and on practical findings. And we finish by
describing work in progress for the next release.

2 System Description

We base our NMT system on the encoder-decoder
framework made available by the open-source
project seq2seq-attn. With its root on a num-
ber of established open-source projects such as
Andrej Karpathy’s char-rnn,3 Wojciech Zaremba’s
standard long short-term memory (LSTM)4 and
the rnn library from Element-Research,5 the
framework provides a solid NMT basis consist-
ing of LSTM, as the recurrent module and faith-
ful reimplementations of global-general-attention
model and input-feeding at each time-step of the
RNN decoder as described by Luong et al. (2015).

It also comes with a variety of features such as
the ability to train with bidirectional encoders and
pre-trained word embeddings, the ability to handle
unknown words during decoding by substituting
them either by copying the source word with the
most attention or by looking up the source word
on an external dictionary, and the ability to switch
between CPU and GPU for both training and de-
coding. The project is actively maintained by the
Harvard NLP group6.

Over the course of the development of our own
NMT system, we have implemented additional
features as described in Section 4, and contributed
back to the open-source community by making
many of them available in the seq2seq-attn
repository.
seq2seq-attn is implemented on top of the

popular scientific computing library Torch.7 Torch
uses Lua, a powerful and light-weight script lan-
guage, as its front-end and uses the C language
where efficient implementations are needed. The
combination results in a fast and efficient system
both at the development and the run time. As an
extension, to fully benefit from multi-threading,
optimize CPU and GPU interactions, and to have
finer control on the objects for runtime (sparse ma-
trix, quantized tensor, ...), we developed a C-based
decoder using the C APIs of Torch, called C-torch,
explained in detail in section 5.4.

The number of parameters within an NMT
model can grow to hundreds of millions, but
there are also a handful of meta-parameters that
need to be manually determined. For some of the

3https://github.com/karpathy/char-rnn
4https://github.com/wojzaremba/lstm
5https://github.com/Element-Research/

rnn
6http://nlp.seas.harvard.edu
7http://torch.ch



Model
Embedding dimension: 400-1000
Hidden layer dimension: 300-1000
Number of layers: 2-4
Uni-/Bi-directional encoder

Training
Optimization method
Learning rate
Decay rate
Epoch to start decay
Number of Epochs
Dropout: 0.2-0.3

Text unit Section 4.1
Vocabulary selection
Word vs. Subword (e.g. BPE)

Train data Section 3
size (quantity vs. quality)
max sentence length
selection and mixture of domains

Table 1: There are a large number of meta-
parameters to be considered during training. The
optimal set of configurations differ from language
pair to language pair.

meta-parameters, many previous work presents
clear choices on their effectiveness, such as us-
ing the attention mechanism or feeding the pre-
vious prediction as input to the current time step
in the decoder. However, there are still many more
meta-parameters that have different optimal values
across datasets, language pairs, and the configura-
tions of the rest of the meta-parameters. In table 1,
we list the meta-parameter space that we explored
during the training of our NMT systems.

In appendix B, we detail the parameters used for
the online system of this first release.

3 Training Resources

Training “generic” engines is a challenge, be-
cause there is no such notion of generic trans-
lation which is what online translation service
users are expecting from these services. Indeed
online translation is covering a very large variety
of use cases, genres and domains. Also available
open-source corpora are domain specific: Europarl
(Koehn, 2005), JRC (Steinberger et al., 2006) or
MultiUN (Chen and Eisele, 2012) are legal texts,
ted talk are scientific presentations, open subtitles
(Tiedemann, 2012) are colloquial, etc. As a result,

the training corpora we used for this release were
built by doing a weighted mix all of the available
sources. For languages with large resources, we
did reduce the ratio of the institutional (Europal,
UN-type), and colloquial types – giving the pref-
erence to news-type, mix of webpages (like Giga-
word).

Our strategy, in order to enable more experi-
ments was to define 3 sizes of corpora for each lan-
guage pair: a baseline corpus (1 million sentences)
for quick experiments (day-scale), a medium cor-
pus (2-5M) for real-scale system (week-scale) and
a very large corpora with more than 10M seg-
ments.

The amount of data used to train online systems
are reported in table 2, while most of the individ-
ual experimental results reported in this report are
obtained with baseline corpora.

Note that size of the corpus needs to be consid-
ered with the number of training periods since the
neural network is continuously fed by sequences
of sentence batches till the network is considered
trained. In Junczys-Dowmunt et al. (2016), au-
thors mention using corpus of 5M sentences and
training of 1.2M batches each having 40 sentences
– meaning basically that each sentence of the full
corpus is presented 10 times to the training. In Wu
et al. (2016), authors mention 2M steps of 128 ex-
amples for English–French, for a corpus of 36M
sentences, meaning about 7 iterations on the com-
plete corpus. In our framework, for this release,
we systematically extended the training up to 18
epochs and for some languages up to 22 epochs.

Selection of the optimal system is made af-
ter the complete training by calculating scores
on independent test sets. As an outcome, we
have seen different behaviours for different lan-
guage pairs with similar training corpus size ap-
parently connected to the language pair complex-
ity. For instance, English–Korean training perplex-
ity still decreases significantly between epoch 13
and 19 while Italian–English perplexity decreases
marginally after epoch 10. For most languages, in
our set-up, optimal systems are achieved around
epoch 15.

We did also some experiment on the corpus
size. Intuitively, since NMT systems do not have
the memorizing capacity of PBMT engines, the
fact that the training use 10 times 10M sentence
corpus, or 20 times 5M corpus should not make
a huge difference. In one of the experiment, we



Language
Pair

Training Testing
#Sents #Tokens Vocab #Sents #Tokens Vocab OOV

source target source target source target source target source target
en↔br 2.7M 74.0M 76.6M 150k 213k 2k 51k 53k 6.7k 8.1k 47 64
en↔it 3.6M 98.3M 100M 225k 312k 2k 52k 53k 7.3k 8.8k 66 85
en↔ar 5.0M 126M 155M 295k 357k 2k 51k 62k 7.5k 8.7k 43 47
en↔es 3.5M 98.8M 105M 375k 487k 2k 53k 56k 8.5k 9.8k 110 119
en↔de 2.6M 72.0M 69.1M 150k 279k 2k 53k 51k 7.0k 9.6k 30 77
en↔nl 2.1M 57.3M 57.4M 145k 325k 2k 52k 53k 6.7k 7.9k 50 141
en→ko 3.5M 57.5M 46.4M 98.9k 58.4k 2k 30k 26k 7.1k 11k 0 -
en↔fr 9.3M 220M 250M 558k 633k 2k 48k 55k 8.2k 8.6k 77 63
fr↔br 1.6M 53.1M 47.9M 112k 135k 2k 62k 56k 7.4k 8.1k 55 59
fr↔it 3.1M 108M 96.5M 202k 249k 2k 69k 61k 8.2k 8.8k 47 57
fr↔ar 5.0M 152M 152M 290k 320k 2k 60k 60k 8.5k 8.6k 42 61
fr↔es 2.8M 99.0M 91.7M 170k 212k 2k 69k 64k 8.0k 8.6k 37 55
fr↔de 2.4M 73.4M 62.3M 172k 253k 2k 57k 48k 7.5k 9.0k 59 104
fr→zh 3.0M 98.5M 76.3M 199k 168k 2k 67k 51k 8.0k 5.9k 51 -
ja↔ko 1.4M 14.0M 13.9M 61.9k 55.6k 2k 19k 19k 9.3k 8.5k 0 0
nl→fr 3.0M 74.8M 84.7M 446k 260k 2k 49k 55k 7.9k 7.5k 150 -
fa→en 795k 21.7M 20.2M 166k 147k 2k 54k 51k 7.7k 8.7k 197 -
ja→en 1.3M 28.0M 22.0M 24k 87k 2k 41k 32k 6.2k 7.3k 3 -
zh→en 5.8M 145M 154M 246k 225k 2k 48k 51k 5.5k 6.9k 34 -

Table 2: Corpora statistics for each language pair (iso 639-1 2-letter code, expect for Portuguese Brazil-
ian noted as ”br”). All language pairs are bidirectional except nlfr, frzh, jaen, faen, enko, zhen. Columns
2-6 indicate the number of sentences, running words and vocabularies referred to training datasets while
columns 7-11 indicate the number of sentences, running words and vocabularies referred to test datasets.
Columns 12 and 13 indicate respectively the vocabulary of OOV of the source and target test sets. (M
stand for milions, k for thousands). Since jako and enko are trained using BPE tokenization (see section
4.1), there is no OOV.

compared training on a 5M corpus trained over 20
epochs for English to/from French, and the same
5M corpus for only 10 epochs, followed by 10
additional epochs on additional 5M corpus. The
10M being completely homogeneous. In both di-
rections, we observe that the 5 × 10 + 5 × 10
training is completing with a score improvement
of 0.8− 1.2 compared to the 5× 20 showing that
the additional corpus is managing to bring a mean-
ingful improvement. This observation leads to a
more general question about how much corpus is
needed to actually build a high quality NMT en-
gine (learn the language), the role and timing of
diversity in the training and whether the incremen-
tal gain could not be substituted by terminology
feeding (learn the lexicon).

4 Technology

In this section we account for several experiments
that improved different aspects of our translation
engines. Experiments range from preprocessing
techniques to extend the network with the abil-
ity to handle named entities, to use multiple word
features and to enforce the attention module to be
more like word alignments. We also report on dif-

ferent levels of translation customization.

4.1 Tokenization

All corpora are preprocessed with an in-house
toolkit. We use standard token separators (spaces,
tabs, etc.) as well as a set of language-dependent
linguistic rules. Several kinds of entities are rec-
ognized (url and number) replacing its content by
the appropriate place-holder. A postprocess is used
to detokenize translation hypotheses, where the
original raw text format is regenerated following
equivalent techniques.

For each language, we have access to language
specific tokenization and normalization rules.
However, our preliminary experiments showed
that there was no obvious gain of using these lan-
guage specific tokenization patterns, and that some
of the hardcoded rules were actually degrading
the performance. This would need more investi-
gation, but for the release of our first batch sys-
tems, we used a generic tokenization model for
most of the languages except Arabic, Chinese and
German. In our past experiences with Arabic, sep-
arating segmentation of clitics was beneficial, and
we retained the same procedure. For German and



Chinese, we used in-house compound splitter and
word segmentation models, respectively.

In our current NMT approach, vocabulary size
is an important factor that determines the ef-
ficiency and the quality of the translation sys-
tem; a larger vocabulary size correlates directly
to greater computational cost during decoding,
whereas low coverage of vocabulary leads to se-
vere out-of-vocabulary (OOV) problems, hence
lowering translation quality.

In most language pairs, our strategy combines
a vocabulary shortlist and a placeholder mecha-
nism, as described in Sections 4.2 and 4.3. This ap-
proach, in general, is a practical and linguistically-
robust option to addressing the fixed vocabulary
issue, since we can take the full advantage of in-
ternal manually-crafted dictionaries and customi-
sized user dictionaries (UDs).

A number of previous work such as character-
level (Chung et al., 2016), hybrid word-character-
based (Luong and Manning, 2016) and subword-
level (Sennrich et al., 2016b) address issues that
arise with morphologically rich languages such as
German, Korean and Chinese. These approaches
either build accurate open-vacabulary word repre-
sentations on the source side or improve transla-
tion models’ generative capacity on the target side.
Among those approaches, subword tokenization
yields competitive results achieving excellent vo-
cabulary coverage and good efficiency at the same
time.

For two language pairs: enko and jaen, we used
source and target sub-word tokenization (BPE, see
(Sennrich et al., 2016b)) to reduce the vocabulary
size but also to deal with rich morphology and
spacing flexibility that can be observed in Korean.
Although this approach is very seducing by its
simplicity and also used systematically in (Wu et
al., 2016) and (Junczys-Dowmunt et al., 2016), it
does not have significant side effects (for instance
generation of impossible words) and is not opti-
mal to deal with actual word morphology - since
the same suffix (josa in Korea) depending on the
frequency of the word ending it is integrated with,
will be splitted in multiple representations. Also,
in Korean, these josa, are is an “agreement” with
the previous syllabus based on their final endings:
however such simple information is not explicitely
or implicitely reachable by the neural network.

The sub-word encoding algorithm Byte Pair En-
coding (BPE) described by Sennrich et al. (2016b)

was re-implemented in C++ for further speed op-
timization.

4.2 Word Features

Sennrich and Haddow (2016) showed that us-
ing additional input features improves translation
quality. Similarly to this work, we introduced in
the framework the support for an arbitrary number
of discrete word features as additional inputs to the
encoder. Because we do not constrain the number
of values these features can take at the same time,
we represent them with continuous and normal-
ized vectors. For example, the representation of a
feature f at time-step t is:

x
(t)
i =

{
1
nf

if f takes the ith value

0 otherwise
(1)

where nf is the number of possible values the
feature f can take and with x(t) ∈ Rnf .

These representations are then concatenated
with the word embedding to form the new input
to the encoder.

We extended this work by also supporting ad-
ditional features on the target side which will be
predicted by the decoder. We used the same input
representation as on the encoder side but shifted
the features sequence compared to the words se-
quence so that the prediction of the features at
time-step t depend on the word at time-step t they
annotate. Practically, we are generating feature at
time t+ 1 for the word generated at time t.

To learn these target features, we added a lin-
ear layer to the decoder followed by the softmax
function and used the mean square error criterion
to learn the correct representation.

For this release, we only used case information
as additional feature. It allows us to work with a
lowercased vocabulary and treat the recasing as a
separate problem. We observed that the use of this
simple case feature in source and target does im-
prove the translation quality as illustrated in Fig-
ure 1. Also, we compared the accuracy of the in-
duced recasing with other recasing frameworks
(SRI disamb, and in-house recasing tool based on
n-gram language models) and observed that the
prediction of case by the NN was higher than us-
ing external recaser, which was expected since NN
has access to source in addition to the source sen-
tence context, and target sentence history.
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Figure 1: Comparison of training progress (per-
plexity/BLEU) with/without source (src) and tar-
get (tgt) case features, with/without feature em-
bedding (embed) on WMT2013 test corpus for
English-French. Score is calculated on lowercase
output. The perplexity increases when the target
features are introduced because of the additional
classification problem. We also notice a notice-
able increase in the score when introducing the
features, in particular the target features. So these
features do not simply help to reduce the vocabu-
lary, but also by themselves help to structure the
NN decoding model.

4.3 Named Entities (NE)

SYSTRAN’s RBMT and SMT translation engines
utilize number and named entity (NE) module to
recognize, protect, and translate NE entities. Simi-
larly, we used the same internal NE module to rec-
ognize numbers and named entities in the source
sentence and temporarily replaced them with their
corresponding placeholders (Table 3).

Both the source and the target side of the train-
ing dataset need to be processed for NE placehold-
ers. To ensure the correct entity recognition, we
cross-validate the recognized entity across paral-
lel dataset, that is: a valid entity recognition in a
sentence should have the same type of entity in its
parallel pair and the word or phrase covered by the
entities need to be aligned to each other. We used
fast align (Dyer et al., 2013) to automatically
align source words to target words.

In our datasets, generally about one-fifth of
the training instances contained one or more NE
placeholders. Our training dataset consists of sen-
tences with NE placeholders as well as sentences
without them to be able to handle both instantiated
and recognized entity types.

NE type Placeholder
Number ent numeric

Measurement ent numex measurement
Money ent numex money

Person (any) ent person
Title ent person title

First name ent person firstname
Initial ent person initials

Last name ent person lastname
Middle name ent person middlename

Location ent location
Organization ent organization

Product ent product
Suffix ent suffix

Time expressions ent timex expression
Date ent date

Date (day) ent date day
Date (Month) ent date month
Date (Year) ent date year

Hour ent hour

Table 3: Named entity placeholder types

Per source sentence, a list of all entities, along
with their translations in the target language, if
available, are returned by our internal NE recogni-
tion module. The entities in the source sentence is
then replaced with their corresponding NE place-
holders. During beam search, we make sure that
an entity placehoder is translated by itself in the
target sentence. When the entire target sentence
is produced along with the attention weights that
provide soft alignments back to the original source
tokens, Placeholders in the target sentences are re-
placed with either the original source string or its
translation.

The substitution of the NE placeholders with
their correct values needs language pair-specific
considerations. In Figure 4, we show that even the
handling of Arabic numbers cannot be straight-
forward as copying the original value in the source
text.

4.4 Guided Alignments

We re-reimplemented Guided alignment strategy
described in Chen et al. (2016). Guided align-
ment enforces the attention weights to be more
like alignments in the traditional sense (e.g. IBM4
viterbi alignment) where the word alignments ex-
plicitly indicate that source words aligned to a tar-
get word are translation equivalents.

Similarly to the previous work, we created an
additional criterion on attention weights,Lga, such
that the difference in the attention weights and the
reference alignments is treated as an error and di-
rectly and additionally optimize the output of the



En → Ko
Train

train data 25 billion 250억
entity-replaced ent numeric billion ent numeric억

Decode
input data 1.4 billion -

entity-replaced ent numeric billion -
translated - ent numeric억

naive substition - 1.4억
expected result - 14억

Table 4: Examples of English and Korean num-
ber expressions where naive recognition and sub-
stitution fails. Even if the model correctly pro-
duces correct placeholders, simply copying the
original value will result in incorrect translation.
These kind of structural entities need language
pair-specific treatment.

attention module.

Lga(A,α) =
1

T
·
∑
t

∑
s

(Ast − αst)
2

The final loss function for the optimization is then:

Ltotal = wga ·Lga(A,α) + (1−wga) ·Ldec(y, x)

where A is the alignment matrix, α attention
weights, s and t indicating the indices in the
source and target sentences, and wga the linear
combination weight for the guided alignment loss.

Chen et al. (2016) also report that decaying
wga, thereby gradually reducing the influence
from guided alignment, over the course of train-
ing found to be helpful on certain datasets. When
guided alignment decay is enabled, wga is gradu-
ally reduced at this rate after each epoch from the
beginning of the training.

Without searching for the optimal parameter
values, we simply took following configurations
from the literature: mean square error (MSE) as
loss function, 0.5 as the linear-combination weight
for guided alignment loss and the cross-entropy
loss for decoder, and 0.9 for decaying factor for
guided alignment loss.

For the alignment, we again utilized
fast align tool. We stored alignments in
sparse format8 to save memory usage, and for
each minibatch a dense matrix is created for faster
computation.

Applying such a constraint on attention weights
can help locate the original source word more

8Compressed Column Storage (CCS)
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Figure 2: Effect of guided alignment. This partic-
ular learning curve is from training an attention-
based model with 4 layers of bidirectional LSTMs
with 800 dimension on a 5 million French to En-
glish dataset.

accurately, which we hope to benefits better NE
placeholder substitutions and especially unknown
word handling.

In Figure 2, we see the effects of guided align-
ment and its decay rate on our English-to-French
generic model. Unfortunately, this full compara-
tive run was disrupted by a power outage and we
did not have time to relaunch, however we can
still clearly observe that up to the initial 5 epochs,
guided alignment, with or without decay, provides
rather big boosts over the baseline training. Af-
ter 5 epochs, the training with decay slow down
compare to the training without, which is rather
intuitive: the guided alignment is indeed in con-
flict with the attention learning. What would re-
main to be seen, is if at the training the training,
the baseline and the guided alignment with decay
are converging.

4.5 Politeness Mode

Many languages have ways to express politeness
and deference towards people being reffered to in
sentences. In Indo-European languages, there are
two pronouns corresponding to the English You; it
is called the T-V distinction between the informal
Latin pronoun tu (T) and the polite Latin pronoun
Vos (V). Asian languages, such as Japanese and
Korean, make an extensive use of honorifics (re-
spectful words), words that are usually appended
to the ends of names or pronouns to indicate the
relative ages and social positions of the speakers.
Expressing politeness can also impact the vocabu-



lary of verbs, adjectives, and nouns used, as well
as sentence structures.

Following the work of Sennrich et al. (2016a),
we implemented a politeness feature in our NMT
engine: a special token is added to each source
sentence during training, where the token indicates
the politeness mode observed in the target sen-
tence. Having such an ability to specify the polite-
ness mode is very useful especially when translat-
ing from a language where politeness is not ex-
pressed, e.g. English, into where such expressions
are abundant, e.g. Korean, because it provides a
way of customizing politeness mode of the trans-
lation output.
Table 5 presents our English-to-Korean NMT
model trained with politeness mode, and it is clear
that the proper verb endings are generated accord-
ing to the user selection. After a preliminary eval-
uation on a small testset from English to Korean,
we observed 70 to 80% accuracy of the polite-
ness generation (Table 6). We also noticed that
86% of sentences (43 out of 50) have exactly the
same meaning preserved across different polite-
ness modes.

This simple approach, however, comes at a
small price, where sometimes the unknown re-
placement scheme tries to copy the special token
in the target generation. A more appropriate ap-
proach that we plan to switch to in our future train-
ings is to directly feed the politeness mode into the
sentential representation of the decoder.

4.6 Customization

Domain adaptation is a key feature for our
customers—it generally encompasses terminol-
ogy, domain and style adaptation, but can also be
seen as an extension of translation memory for hu-
man post-editing workflows.

SYSTRAN engines integrate multiple tech-
niques for domain adaptation, training full new
in-domain engines, automatically post-editing an
existing translation model using translation mem-
ories, extracting and re-using terminology. With
Neural Machine Translation, a new notion of “spe-
cialization” comes close to the concept of incre-
mental translation as developed for statistical ma-
chine translation like (Ortiz-Martı́nez et al., 2010).

4.6.1 Generic Specialization
Domain adaptation techniques have successfully
been used in Statistical Machine Translation. It is
well known that a system optimized on a specific

text genre obtains higher accuracy results than
a “generic” system. The adaptation process can
be done before, during or after the training pro-
cess. Our preliminary experiments follow the lat-
ter approach. We incrementally adapt a Neural MT
“generic” system to a specific domain by running
additional training epochs over newly available in-
domain data.

Adaptation proceeds incrementally when new
in-domain data becomes available, generated by
human translators while post-editing, which is
similar to the Computer Aided Translation frame-
work described in (Cettolo et al., 2014).

We experiment on an English-to-French trans-
lation task. The generic model is a subsample of
the corpora made available for the WMT15 trans-
lation task (Bojar et al., 2015). Source and tar-
get NMT vocabularies are the 60k most frequent
words of source and target training datasets. The
in-domain data is extracted from the European
Medical Agency (EMEA) corpus. Table 7 shows
some statistics of the corpora used in this experi-
ment.

Our preliminary results show that incremental
adaptation is effective for even limited amounts
of in-domain data (nearly 50k additional words).
Constrained to use the original “generic” vocabu-
lary, adaptation of the models can be run in a few
seconds, showing clear quality improvements on
in-domain test sets.
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Figure 3: Adaptation with In-Domain data.

Figure 3 compares the accuracy (BLEU) of
two systems: full is trained after concatenation
of generic and in-domain data; adapt is initially
trained over generic data (showing a BLEU score
of 29.01 at epoch 0) and adapted after running sev-
eral training epochs over only the in-domain train-



En:
A senior U.S. treasury official is urging china to move faster on making its currency more flexible.

Ko with Formal mode:
미국재무부고위관계자는중국이위안화의융통성을더유연하게만들기위해더빨리움직일것을촉구했습니다.

Ko with Informal mode:
미국재무부고위관계자는중국이위안화를좀더유연하게만들기위해더빨리움직일것을촉구하고있어요.

Table 5: A translation examples from an En-Ko system where the choice of different politeness modes
affects the output.

Mode Correct Incorrect Accuracy
Formal 30 14 68.2%

Informal 35 9 79.5%

Table 6: Accuracy of generating correct Politeness
mode of an English-to-Korean NMT system. The
evaluation was carried out on a set of 50 sentences
only; 6 sentences were excluded from evaluation
because neither the original nor their translations
contained any verbs.

Type Corpus # lines # src tok (EN) # tgt tok (FR)
Train Generic 1M 24M 26M

EMEA 4,393 48k 56k
Test EMEA 2,787 23k 27k

Table 7: Data used to train and adapt the generic
model to a specific domain. The test corpus also
belongs to the specific domain.

ing data. Both systems share the same ”generic”
NMT vocabularies. As it can be seen the adapt sys-
tem improves drastically its accuracy after a sin-
gle additional training epoch, obtaining a similar
BLEU score than the full system (separated by .91
BLEU). Note also that each additional epoch using
the in-domain training data takes less than 50 sec-
onds to be processed, while training the full sys-
tem needs more than 17 hours.

Results validate the utility of the adaptation ap-
proach. A human post-editor would take advan-
tage of using new training data as soon as it be-
comes available, without needing to wait for a long
full training process. However, the comparison is
not entirely fair since full training would allow to
include the in-domain vocabulary in the new full
model, what surely would result in an additional
accuracy improvement.

4.6.2 Post-editing Engine
Recent success of Pure Neural Machine Transla-
tion has led to the application of this technology
to various related tasks and in particular to the Au-
tomatic Post-Editing (APE). The goal of this task
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Figure 4: Accuracy results of RBMT, NMT, NPE
and NPE multi-source.

is to simulate the behavior of a human post-editor,
correcting translation errors made by a MT sys-
tem.

Until recently, most of the APE approaches
have been based on phrase-based SMT systems,
either monolingual (MT target to human post-
edition) (Simard et al., 2007) or source-aware
(Béchara et al., 2011). For many years now SYS-
TRAN has been offering a hybrid Statistical Post-
Editing (SPE) solution to enhance the translation
provided by its rule-based MT system (RBMT)
(Dugast et al., 2007).

Following the success of Neural Post-Editing
(NPE) in the APE task of WMT’16 (Junczys-
Dowmunt and Grundkiewicz, 2016), we have run
a series of experiments applying the neural ap-
proach in order to improve the RBMT system
output. As a first experiment, we compared the
performance of our English-to-Korean SPE sys-
tem trained on technical (IT) domain data to two
NPE systems trained on the same data: monolin-
gual NPE and multi-source NPE, where the in-
put language and the MT hypothesis sequences
have been concatenated together into one input se-
quence (separated by a special token).

Figure 4 illustrates the accuracy (BLEU) re-



sults of four different systems at different training
epochs. The RBMT system performs poorly, con-
firming the importance of post-editing. Both NPE
systems clearly outperform SPE. It can also be ob-
served that adding source information even in a
simplest way possible (NPE multi-source), with-
out any source-target alignment, considerably im-
proves NPE translation results.

The system performing NPE multi-source ob-
tains similar accuracy results than pure NMT.
What can be seen is that NPE multi-source es-
sentially employs the information from the origi-
nal sentence to produce translations. However, no-
tice that benefits of utilizing multiple inputs from
different sources is clear at earlier epochs while
once the model parameters converge, the differ-
ence in performances of NMT and NPE multi-
source models become negligible.

Further experiments are currently being con-
ducted aiming at finding more sophisticated ways
of combining the original source and the MT
translation in the context of NPE.

5 Performance

As previously outlined, one of the major draw-
backs of NMT engines is the need for cutting-edge
hardware technology to face the enormous compu-
tational requirements at training and runtime.

Regarding training, there are two major issues:
the full training time and the required computation
power, i.e. the server investment. For this release,
most of our trainings have been running on single
GTX GeForce 1080 GPU (about $2.5k) while in
(Wu et al., 2016), authors mention using 96 K80
GPU for a full week for training one single lan-
guage pair (about $250k). On our hardware, full
training on 2x5M sentences (see section 3) took a
bit less than one month.

A reasonnable target is to maintain training time
for any language pair under one week and keep-
ing reasonable investment so that the full research
community can have competitive trainings but also
indirectly so that all of our customers can benefit
from the training technology. To do so, we need to
better leverage multiple GPUs on a single server
which is on-going engineering work. We also need
to continue on exploring how to learn more with
less data. For instance, we are convinced that in-
jecting terminology as part of the training data
should be competitive with continuing adding full
sentences.

Model BLEU
baseline 49.24
40% pruned 48.56
50% pruned 47.96
60% pruned 45.90
70% pruned 38.38
60% pruned and retrained 49.26

Table 8: BLEU scores of pruned models on an
internal test set.

Also, shortening training cycle can also be
achieved by better control of the training cycle.
We have shown that multiple features are boosting
the training pace, and if going to bigger network is
clearly improving performance. For instance, we
are using a bidirectional 4 layer RNN in addition
to our regular RNN, but in Wu et al. (2016), au-
thors mention using bidirectional RNN only for
the first layer. We need to understand more these
phenomena and restrict to the minimum to reduce
the model size.

Finally, work on specialization described in sec-
tions 4.6.1 and 5.2 are promising for long term
maintenance: we could reach a point where we do
not need to retrain from scratch but continuously
improve existing model and use teacher models to
boost initial trainings.

Regarding runtime performance, we have been
exploring the following areas and are reaching to-
day throughputs compatible with production re-
quirement not only using GPUs but also using
CPU and we report our different strategies in the
following sub-sections.

5.1 Pruning

Pruning the parameters of a neural network is a
common technique to reduce its memory footprint.
This approach has been proven efficient for the
NMT tasks in See et al. (2016). Inspired by this
work, we introduced similar pruning techniques in
seq2seq-attn. We reproduced that models pa-
rameters can be pruned up to 60% without any per-
formance loss after retraining as shown in Table 8.

With a large pruning factor, neural network’s
weights can also be represented with sparse matri-
ces. This implementation can lead to lower com-
putation time but more importantly to a smaller
memory footprint that allows us to target more
environment. Figures 5 and 6 show experiments



Figure 5: Processing time to perform a 1000 ×
1000 matrix multiplication on a single thread.

Figure 6: Memory needed to perform a 1000 ×
1000 matrix multiplication.

involving sparse matrices using Eigen9. For ex-
ample, when using the float precision, a mul-
tiplication with a sparse matrix already begins to
take less memory when 35% of its parameters are
pruned.

Related to this work, we present in Section 5.4
our alternative Eigen-based decoder that allows us
to support sparse matrices.

5.2 Distillation
Despite that surprisingly accurate, NMT systems
need for deep networks in order to perform well.
Typically, a 4-layer LSTM with 1000 hidden units
per layer (4 x 1000) are used to obtain state-of-
the-art results. Such models require cutting-edge
hardware for training in reasonable time while in-
ference becomes also challenging on standard se-
tups, or on small devices such as mobile phones.
Though, compressing deep models into smaller

9http://eigen.tuxfamily.org

networks has been an active area of research.
Following the work in (Kim and Rush, 2016),

we experimented sequence-level knowledge dis-
tillation in the context of an English-to-French
NMT task. Knowledge distillation relies on train-
ing a smaller student network to perform better
by learning the relevant parts of a larger teacher
network. Hence, ’wasting’ parameters on trying to
model the entire space of translations. Sequence-
level is the knowledge distillation variant where
the student model mimics the teacher’s actions at
the sequence-level.

The experiment is summarized in 3 steps:

• train a teacher model on a source/reference
training set,

• use the teacher model to produce translations
for the source training set,

• train a student model on the new
source/translation training set.

For our initial experiments, we produced 35-
best translations for each of the sentences of the
source training set, and used a normalized n-gram
matching score computed at the sentence level, to
select the closest translation to each reference sen-
tence. The original training source sentences and
their translated hypotheses where used as training
data to learn a 2 x 300 LSTM network.

Results showed slightly higher accuracy results
for a 70% reduction of the number of parameters
and a 30% increase on decoding speed. In a sec-
ond experiment, we learned a student model with
the same structure than the teacher model. Surpris-
ingly, the student clearly outperformed the teacher
model by nearly 1.5 BLEU.

We hypothesize that the translation performed
over the target side of the training set produces a
sort of language normalization which is by con-
struction very heterogeneous. Such normalization
eases the translation task, being learned by not so
deep networks with similar accuracy levels.

5.3 Batch Translation

To increase translation speed of large texts, we
support batch translation that works in addition to
the beam search. It means that for a beam of size
K and a batch of size B, we forward K × B se-
quences into the model. Then, the decoder output
is split across each batch and the beam path for
each sentence is updated sequentially.



0 20 40 60 80 100
0

100

200

300

400

500

batch size

to
ke

ns
/s

Figure 7: Tokens throughput when decoding from
a student model (see section 5.2) with a beam of
size 2 and using float precision. The experiment
was run using a standard Torch + OpenBLAS in-
stall and 4 threads on a desktop Intel i7 CPU.

As sentences within a batch can have large vari-
ations in size, extra care is needed to mask accord-
ingly the output of the encoder and the attention
softmax over the source sequences.

Figure 7 shows the speedup obtained using
batch decoding in a typical setup.

5.4 C++ Decoder
While Torch is a powerful and easy to use frame-
work, we chose to develop an alternative C++
implementation for the decoding on CPU. It in-
creases our control over the decoding process and
open the path to further memory and speed im-
provements while making deployment easier.

Our implementation is graph-based and use
Eigen for efficient matrix computation. It can load
and infer from Torch models.

For this release, experiments show that the
decoding speed is on par or faster than the
Torch-based implementation especially in a multi-
threaded context. Figure 8 shows the better use of
parallelization of the Eigen-based implementation.

6 Evaluation

Evaluation of machine translation has always been
a challenge and subject to many papers and dedi-
cated workshops (Bojar et al., 2016). While au-
tomatic metrics are now used as standard in the
research world and have shown good correlation
with human evaluation, ad-hoc human evaluation
or productivity analysis metrics are rather used in
the industry (Blain et al., 2011).

1 2 4 8
0

20

40

60

80

100

threads

to
ke

ns
/s

Eigen-based
Torch-based

Figure 8: Tokens throughput with a batch of size 1
in the same condition as Figure 7.

As a translation solution company, even if au-
tomatic metrics are used through all the training
process (and we give scores in the section 6.1), we
care about human evaluation of the results. Wu et
al. (2016) mention human evaluation but simulta-
neously cast a doubt on the referenced human to
translate or evaluate. In this context, the claim “al-
most indistinguishable with human translation” is
at the same time strong but also very vague. On
our side, we have observed during all our experi-
ments and preparation of specialized models, un-
precedented level of quality, and contexts where
we could claim “super human” translation quality.

However, we need to be very carefully defin-
ing the tasks, the human that are being compared
to, and the nature of the evaluation. For evaluating
technical translation, the nature of the evaluation
is somewhat easy and really depending on the user
expectation: is the meaning properly conveyed, or
is the sentence faster to post-edit than to translate.
Also, to avoid doubts about integrity or compe-
tency of the evaluation we sub-contracted the task
to CrossLang, a company specialized in machine
translation evaluation. The test protocol was de-
fined collaboratively and for this first release, we
decided to perform ranking of different systems,
and we present in the section 6.2 the results ob-
tained on two very different language pairs: En-
glish to/from French, and English to Korean.

Finally, in the section 6.3, we also present some
qualitative evaluation results showing specificities
of the Neural Machine Translation.



6.1 Automatic Scoring and system
comparison

Figure 9 plots automatic accuracy results, BLEU,
and Perplexities for all language pairs. It is re-
markable the high correlation between perplex-
ity and BLEU scores, showing that language pairs
with lower perplexity yield higher BLEU scores.
Note also that different amounts of training data
were used for each system (see Table 2). BLEU
scores were calculated over an internal test set.

From the beginning of this report we have used
“internal” validation and test sets, what makes it
difficult to compare the performance of our sys-
tems to other research engines. However, we must
keep in mind that our goal is to account for im-
provements in our production systems. We focus
on human evaluations rather than on any automatic
evaluation score.

6.2 Human Ranking Evaluation
To evaluate translation outputs and compare with
human translation, we have defined the following
protocol.

1. For each language pair, 100 sentences “in do-
main” (*) are collected,

2. These sentences are sent to human transla-
tion (**), and translated with candidate model
and using available online translation ser-
vices (***).

3. Without notification of the mix of human and
machine translation, a team of 3 professional
translators or linguists fluent in both source
and target languages is then asked to rank 3
random outputs for each sentence based on
their preference as translation. Preference in-
cludes accuracy as a priority, but also fluency
of the generated translation. They have the
choice to give them 3 different ranks, or can
also decide to give 2 or the 3 of them the same
rank, if they cannot decide.

(*) for Generic domain, sentences from recent
news article were selected online, for Technical
(IT) sentences part of translation memory defined
in section 4.6 were kept apart from the training.
(**) for human translation, we did use translation
agency (human-pro), and online collaborative
translation platform (human-casual).
(***) we used Naver Translator10 (Naver), Google

10http://translate.naver.com

Translate11 (Google) and Bing Translator12

(Bing).

For this first release, we experimented on the
evaluation protocol for 2 different extremely dif-
ferent categories of language pairs. On one hand,
English↔French which is probably the most stud-
ied language pairs for MT and for which re-
sources are very large: (Wu et al., 2016) mention
about 36M sentence pairs used in their NMT train-
ing and the equivalent PBMT is completed by a
web-scale target side language models13. Also, as
English is a low inflected language, the current
phrase-based technology for target language En-
glish is more competitive due to the relative sim-
plicity of the generation and weight of gigantic
language models.

On the other hand, English↔Korean is one of
the toughest language pair due to the far distance
between English and Korean language, the small
availability of training corpus, and the rich agglu-
tinative morphology of Korean. For a real compar-
ison, we ran evaluation against Naver Translation
service from English into Korean, where Naver is
the main South Korean search engine.

Tables 9 and 10 describe the different evalua-
tions and their results.

Several interesting outcomes:

• Our vanilla English 7→ French model outper-
forms existing online engines and our best of
breed technology.

• For French 7→ English, if the model slightly
outperforms (human-casual) and our best of
breed technology, it stays behind Google
Translate, and more significantly behind Mi-
crosoft Translator.

• The generic English 7→ Korean model shows
closer results with human translation and out-
performs clearly existing online engines.

• The “in-domain” specialized model surpris-
ingly outperforms the reference human trans-
lation.

We are aware that far more evaluations are nec-
essary and we will be launching a larger eval-
uation plan for our next release. Informally, we

11http://translate.google.com
12http://translator.bing
13In 2007, Google already mentions using 2 trillion words

in their language models for machine translation (Brants et
al., 2007).
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Figure 9: Perplexity and BLEU scores obtained by NMT engines for all language pairs. Perplexity and
BLEU scores were calculated respectively on validation and test sets. Note that English-to-Korean and
Farsi-to-English systems are not shown in this plot achieving respectively (18.94, 16.50) and (3.84,
34.19) scores for perplexity and BLEU.

Language Pair Domain (*) Human Translation (**) Online Translation (***)
English 7→ French Generic human-pro, human-casual Bing, Google
French 7→ English Generic human-pro, human-casual Bing, Google
English 7→ Korean News human-pro Naver, Google, Bing
English 7→ Korean Technical (IT) human-pro N/A

Table 9: Performed evaluations



do observe that the biggest performance jump
are observed on complicated language pairs, like
English-Korean or Japanese-English showing that
NMT engines are better able to handle major
structure differences, but also on the languages
with lower resources like Farsi-English demon-
strating that NMT is able to learn better with less,
and we will explore this even more.

Finally, we are also launching in parallel, a real-
life beta-testing program with our customers so
that we can also obtain formal feedback from their
use-case and related to specialized models.

6.3 Qualitative Evaluation

In the table 11, we report the result of error analy-
sis for NMT, SMT and RBMT for English-French
language pair. This evaluation confirms the trans-
lation ranking performed in the previous but also
exhibits some interesting facts:

• The most salient error comes from missing
words or parts of sentence. It is interesting to
see though that half of these “omissions” are
considered okay by the reviewers and were
most of the time not considered as errors -
it indeed shows the ability of the system not
only to translate but to summarize and get
to the point as we would expect from hu-
man translation. Of course, we need to fix the
cases, where the “omissions” are not okay.

• Another finding is that the engine is badly
managing quotes, and we will make sure to
specifically teach that in our next release.
Other low-hanging fruit are the case genera-
tion, which seems sometimes to get off-track,
and the handling of Named Entity that we
have already introduced in the system but not
connected for the release.

• On the positive side, we observe that NMT
is drastically improving fluency, reduces
slightly meaning selection errors, and handle
better morphology although it does not have
yet any specific access to morphology (like
sub-word embedding). Regarding meaning
selection errors, we will focussing on teach-
ing more expressions to the system which is
still a major structural weakness compared to
PBMT engines.

7 Practical Issues

Translation results from an NMT system, at first
glance, is incredibly fluent that your are diverted
from its downsides. Over the course of the training
and during our internal evaluation, we found out
multiple practical issues worth sharing:

1. translating very long sentences

2. translating user input such as a short word or
the title of a news article

3. cleaning the corpus

4. alignment

NMT is greatly impacted by the train data, on
which NMT learns how to generate accurate and
fluent translations holistically. Because the max-
imal length of a training instance was limited to
a certain length during the training of our models,
NMT models are puzzled by sentences that exceed
this length, not having encountered such a train-
ing data. Hard splitting of longer sentences has
some side-effects since the model consider both
parts as full sentence. As a consequence, what-
ever is the limit we set for sentence length, we
do also need to teach the neural network how
to handle longer sentences. For that, we are ex-
ploring several options including using separate
model based on source/target alignment to find op-
timal breaking point, and introduce special <TO
BE CONTINUED> and <CONTINUING> tokens.
Likewise, very short phrases and incomplete or
fragmental sentences were not included in our
training data, and consequently NMT systems fail
to correctly translate such input texts (e.g. Figure
10). Here also, to enable this, we do simply need to
teach the model to handle such input by injecting
additional synthetic data.

Also, our training corpus includes a number of
resources that are known to contain many noisy
data. While NMT seems more robust than other
technologies for handling noise, we can still per-
ceive noise effect in translation - in particular
for recurring noise. An example is in English-to-
Korean, where we see the model trying to sys-
tematically convert amount currency in addition
to the translation. As demonstrated in Section 5.2,
preparing the right kind of input to NMT seems to
result in more efficient and accurate systems, and
such a procedure should also be directly applied to
the training data more aggressively.



Finally,let us note that source/target alignment
is a must for our users, but this information is
missing from NMT output due to soft align-
ment. To hide this issue from the end-users, mul-
tiple alignment heuristic are showing tradictional
target-source alignment.

8 Further Work

In this section we outline further experiments cur-
rently being conducted. First we extend NMT de-
coding with the ability to make use of multiple
models. Both external models, particularly an n-
gram language model, as well as decoding with
multiple networks (ensemble). We also work on
using external word embeddings, and on mod-
elling unknown words within the network.

8.1 Extending Decoding

8.1.1 Additional LM
As proposed by (Gülçehre et al., 2015), we con-
duct experiments to integrate an n-gram language
model estimated over a large dataset on our Neural
MT system. We followed a shallow fusion integra-
tion, similar to how language models are used in a
standard phrase-based MT decoder.

In the context of beam search decoding in NMT,
at each time step t, candidate words x are hy-
pothesized and assigned a score according to the
neural network, pNMT (x). Sorted according to
their respective scores, the K-best candidates, are
reranked using the score assigned by the language
model, pLM (x). The resulting probability of each
candidate is obtained by the weighted sum of
each log-probability log p(x) = log pLM (x) +
β log pNMT (x). Where β is a hyper-parameter
that needs to be tuned.

This technique is specially useful for handling
out-of-vocabulary words (OOV). Deep networks
are technically constrained to work with limited
vocabulary sets (in our experiments we use target
vocabularies of 60k words), hence suffering from
important OOV problems. In contrast, n-gram lan-
guage models can be learned for very large vocab-
ularies.

Initial results show the suitability of the shal-
low integration technique to select the appropriate
OOV candidate out of a dictionary list (external re-
source). The probability obtained from a language
model is the unique modeling alternative for those
word candidates for which the neural network pro-
duces no score.

8.1.2 Ensemble Decoding

Ensemble decoding has been verified as a practi-
cal technique to further improve the performance
compared to a single Encoder-Decoder model
(Sennrich et al., 2016b; Wu et al., 2016; Zhou et
al., 2016). The improvement comes from the di-
versity of prediction from different neural network
models, which are learned by random initializa-
tion seeds and shuffling of examples during train-
ing, or different optimization methods towards the
development set(Cho et al., 2015). As a conse-
quence, 3-8 isolated models will be trained and
ensembled together, considering the cost of mem-
ory and training speed. Also, (Junczys-Dowmunt
et al., 2016) provides some methods to accelerate
the training by choosing different checkpoints as
the final models.

We implement ensemble decoding by averaging
the output probabilities for each estimation of tar-
get word x with the formula:

pensx = 1
M

∑M
m=1 p

m
x

wherein, pmx represents probabilities of each x,
and M is the number of neural models.

8.2 Extending word embeddings

Although NMT technology has recently accom-
plished a major breakthrough in Machine Trans-
lation field, it still remains constrained due to the
limited vocabulary size and to the use of bilin-
gual training data. In order to reduce the negative
impact of both phenomena, experiments are cur-
rently being held on using external word embed-
ding weights.

Those external word embeddings are not
learned by the NMT network from bilingual data
only, but by an external model (e.g. word2vec
(Mikolov et al., 2013)). They can therefore be esti-
mated from larger monolingual corpora, incorpo-
rating data from different domains.

Another advantage lies in the fact that, since ex-
ternal word embedding weights are not modified
during NMT training, it is possible to use a dif-
ferent vocabulary for this fixed part of the input
during the application or re-training of the model
(provided that the weights for the words in new vo-
cabulary come from the same embedding space as
the original ones). This may allow a more efficient
adaptation to the data coming from a different do-
main with a different vocabulary.



Human-pro Human-casual Bing Google Naver Systran V8
English 7→ French -64.2 -18.5 +48.7 +10.4 +17.3
French 7→ English -56.8 +5.5 -23.1 -8.4 +5
English 7→ Korean -15.4 +35.5 +33.7 +31.4 +13.2
English 7→ Korean (IT) +30.3

Table 10: This table shows relative preference of SYSTRAN NMT compared to other outputs calcu-
lated this way: for each triplet where output A and B were compared, we note prefA>B the number of
times where A was strictly preferred to B, and EA the total number of triplet including output A. For
each output, E, the number in the table is compar(SNMT, E) = (prefSNMT>E − prefE>SNMT)/ESNMT.
compar(SNMT, E) is a percent value in the range [−1; 1]

Figure 10: Effect of translation of a single word through a model not trained for that.



Category NMT RB SMT Example
Entity

Major 7 5 0 Galaxy Note 7 7→ note 7 de Galaxy vs. Galaxy Note 7

Format 3 1 1 (number localization): $2.66 7→ 2.66 $ vs. 2,66 $

Morphology
Minor - Local 3 2 3 (tense choice): accused 7→ accusait vs. a accusé

Minor - Sentence Level 3 3 5
the president [...], she emphasized

7→ la président [...], elle a souligné vs. la [...], elle

Major 3 4 6 he scanned 7→ il scanné vs. il scannait

Meaning Selection
Minor 9 17 7 game 7→ jeu vs. match

Major - Prep Choice 4 9 10
[... facing war crimes charges] over [its bombardment of ...]

7→ contre vs. pour

Major - Expression 3 7 1
[two] counts of murder

7→ chefs de meutre vs. chefs d’accusation de meutre

Major - Not Translated 5 1 4 he scanned 7→ il scanned vs. il a scanné

Major - Contextual Meaning 14 39 14
33 senior Republicans

7→ 33 républicains supérieurs vs. 33 ténors républicains

Word Ordering and Fluency

Minor 2 28 15
(determiner):[without] a [specific destination in mind]

7→ sans une destination [...] vs. sans destination [...]

Major 3 16 15

(word ordering):in the Sept. 26 deaths
7→ dans les morts septembre de 26

vs. dans les morts du 26 septembre

Missing or Duplicated

Missing Minor 7 3 1

a week after the hurricane struck
7→ une semaine après l’ouragan

vs. une semaine après que l’ouragan ait frappé

Missing Major 6 1 3

As a working oncologist, Giordano knew [...]
7→ Giordano savait

vs. En tant qu’oncologue en fonction, Giordano savait

Duplicated Major 2 2 1

for the Republican presidential nominee
7→ au candidat républicain républicain

vs. au candidat républicain

Misc. (Minor)
Quotes, Punctuations 2 0 0 (misplaced quotes)

Case 6 0 2

[...] will be affected by Brexit
7→ [...] Sera touchée Par le brexit

vs. [...] sera touchée par le Brexit

Total
Major 47 84 54
Minor 36 55 35
Minor & Major 83 139 89

Table 11: Human error analysis done for 50 sentences of the corpus defined in the section 6.2 for English-
French on NMT, SMT (Google) and RBMT outputs. Error categories are: - issue with entity handling
(Entity), issue with Morphology either local or reflecting sentence level missing agreements, issue with
Meaning Selection splitted into different sub-categories, - issue with Word Ordering or Fluency (wrong
or missing determiner for instance), - missing or duplicated words. Errors are either Minor when reader
could still understand the sentence without access to the source, otherwise is considered as Major. Er-
roneous words are counted in only one category even if several problems add-up - for instance ordering
and meaning selection.



8.3 Unknown word handling

When an unknown word is generated in the target
output sentence, a general encoder-decoder with
attentional mechanism utilizes heuristics based on
attention weights such that the source word with
the most attention is either directly copied as-is or
looked up in a dictionary.

In the recent literature (Gu et al., 2016; Gul-
cehre et al., 2016), researchers have attempted to
directly model the unknown word handling within
the attention and decoder networks. Having the
model learn to take control of both decoding and
unknown word handling will result in the most op-
timized way to address the single unknown word
replacement problem, and we are implementing
and evaluating the previous approaches within our
framework.

9 Conclusion

Neural MT has progressed at a very impressive
rate, and it has proven itself to be competitive
against online systems trained on train data whose
size is several orders of magnitude larger. There
is no doubt that Neural MT is definitely a tech-
nology that will continue to have a great impact
on academia and industry. However, at its current
status, it is not without limitations; on language
pairs that have abundant amount of monolingual
and bilingual train data, phrase-based MT still per-
form better than Neural MT, because Neural MT
is still limited on the vocabulary size and deficient
utilization of monolingual data.

Neural MT is not an one-size-fits-all technology
such that one general configuration of the model
universally works on any language pairs. For ex-
ample, subword tokenization such as BPE pro-
vides an easy way out of the limited vocabulary
problem, but we have discovered that it is not al-
ways the best choice for all language pairs. Atten-
tion mechanism is still not at the satisfactory status
and it needs to be more accurate for better con-
trolling the translation output and for better user
interactions.

For upcoming releases, we have begun to mak-
ing even more experiments with injection of var-
ious linguistic knowledges, at which SYSTRAN
possesses the foremost expertise. We will also ap-
ply our engineering know-hows to conquer the
practical issues of NMT one by one.
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A Remarkable Results

In this section, we highlight a serie of “remarkable” translations (positively remarkable and also few
negatively outstanding) that we found out during evaluation for a variety of languages.

Language
Pair Source NMT Google Translate (2016/10/15)

en7→fr The report also said that although
three-quarters of Chinese say their
country is playing a larger role in
the world than it did a decade ago,
most want their government to fo-
cus on domestic issues rather than
helping other nations.

Le rapport dit aussi que, bien que
les trois quarts des Chinois disent
que leur pays joue un rôle plus im-
portant dans le monde qu’il ne l’a
fait il y a dix ans, la plupart veulent
que leur gouvernement se concentre
sur les questions nationales plutôt
que d’aider d’autres nations.

Le rapport indique également que,
bien que les trois quarts des Chi-
nois disent que leur pays joue un
rôle plus important dans le monde
qu’il y a dix ans, la plupart veulent
que leur gouvernement de se con-
centrer sur les questions intérieures
plutôt que d’aider les autres nations.

fr7→en Fenêtre à rue se fermait mal, très
très bruyant et mal dormi. Petit
déjeuner banal.

The room was very clean and the
room was very clean.

street window will not close, very
very noisy and slept badly. mun-
dane breakfast.

en7→ko Forty Republican senators and con-
gressmen have revoked their sup-
port for the Republican presidential
nominee — with nearly 30 of them
calling on him to quit the race alto-
gether in recent days.

40 명의 공화당 상원의원들과 하
원의원들이 공화당 대통령 후보자
에 대한 그들의 지지를 철회했고,
거의 30 명의 사람들이 최근 며칠
동안그경주를그만두도록그에게
요청했습니다.

(From Naver NMT14): 40여명의공
화당의원들과하원의원들은거의
30명의공화당대통령후보들을철
회했고, 그들 중 거의 30명이 최근
에 그를 은퇴 직전에 그만두게 할
것을촉구했다.

en7→it all this leads to feelings of inse-
curity and conflict thus reinforcing
negative spirals.

tutto ciò porta a sentimenti di insi-
curezza e di conflitto, rafforzando
cosı̀ la spirale negativa.

tutto ciò genera elementi di insi-
curezza e di conflitto rinforzando
quindi spirali negative.

it7→fr Mi sembra che ciò non abbia nulla
a che vedere con una penuria ali-
mentare: si tratta di una vera cares-
tia, di una vera e propria catas-
trofe che non è naturale ma strut-
turale, provocata da un regime
folle, criminale, psicopatico, peg-
giore dei peggiori regimi esistiti
nell’Unione Sovietica e nella Ro-
mania di Ceaucescu.

Il me semble que cela n’a rien à
voir avec une pénurie alimentaire:
il s’agit d’une véritable famine,
d’une véritable catastrophe qui
n’est pas naturelle mais structurelle,
provoquée par un régime insensé,
criminel, psychopathe, pire que les
pires régimes de l’union soviétique
et de la Roumanie de Ceaucescu.

Il me semble que cela n’a rien à
voir avec une pénurie alimentaire: il
est une véritable famine, une catas-
trophe qui est pas naturel, mais
une structure, provoquée par un
régime criminel fou, psychopathe,
le pire des pires régimes existait
l’Union soviétique et en Roumanie
de Ceaucescu.

it7→fr Ebbene io sono in totale disaccordo:
lo Stato non deve passare in sec-
ondo piano; deve invece intervenire
di più e garantire una maggiore vig-
ilanza in ambito economico.

je suis tout à fait d’accord: l’état
ne doit pas passer sous silence; il
doit plutôt agir et assurer une plus
grande vigilance dans le domaine
économique.

Eh bien, je suis en désaccord total:
l’Etat ne doit pas prendre un siège
arrière; Il doit plutôt agir plus et as-
surer une plus grande supervision
dans l’économie.

es7→en ¿Es posible un Bangladesh más am-
able con los niños? Is Bangladesh more friendly with

children?

Can a kinder Bangladesh with chil-
dren?

en7→de On the other hand, businesses are
constantly complaining about the
shortage of specialist staff, using
this supposed shortage as an excuse
to use cheap labour.

Andererseits beschweren sich Un-
ternehmen ständig über den Man-
gel an Fachpersonal, indem sie
diese angebliche Knappheit als
Vorwand benutzen, billige Arbeit-
skräfte einzusetzen.

Auf der anderen Seite beschw-
eren sich Unternehmen ständig über
den Mangel an Fachkräften, wobei
diese angebliche Mangelhaftigkeit
als Ausrede für billige Arbeitskräfte
verwendet wird.

zh7→en 朝天下,在又到了我的互.
Morning News, now it’s our inter-
active time.

(From Google GNMT): North Ko-
rea heard the world, and now to our
interaction time friends.



Language
Pair Source NMT Google Translate (2016/10/15)

br7→en Face às decisões de Nice, tı́nhamos
de ter em conta esta situação e
de adotar uma metodologia que
contemplasse as transformações
necessárias.

Faced with the Nice decisions, we
had to take this situation into ac-
count and adopt a methodology
that would address the necessary
changes.

Nice view of the decisions we
had to take account of this situa-
tion and adopt a methodology that
took into consideration the neces-
sary changes.

fr7→br Une information présentée au mo-
ment opportun signifie la trans-
parence, laquelle crée la confiance
et évite à l’entreprise de subir des
pertes.

A informação apresentada no
momento oportuno significa
transparência, que cria confiança e
evita que a empresa sofra perdas.

Informação apresentada em uma
transparência meio oportuna, que
cria confiança e evita a empresa a
sofrer perdas.

B Online System Parameters

All systems were trained with 4 LSTM layers, size of word embedding vectors was 500, dropout was set
to 0.3 and we used bidirectional RNN (BRNN). Column Guided Alignment indicates wether the network
was trained with guided alignments and on which epoch the feature was stopped.

Tokenization
RNN
size

Optimal
Epoch

Guided
Alignment

NER
aware Special

zh7→en word boundary-generic 800 12 epoch 4 yes
en7→it generic 800 16 epoch 4 yes
it7→en generic 800 16 epoch 4 yes
en7→ar generic-crf 800 15 epoch 4 no
ar 7→en crf-generic 800 15 epoch 4 no
en7→es generic 800 18 epoch 4 yes
es7→en generic 800 18 epoch 4 yes
en7→de generic-compound splitting 800 17 epoch 4 yes
de7→en compound splitting-generic 800 18 epoch 4 yes
en 7→nl generic 800 17 epoch 4 no
nl 7→en generic 800 14 epoch 4 no
en7→fr generic 800 18 epoch 4 yes double corpora (2 x 5M)
fr7→en generic 800 17 epoch 4 yes
ja7→en bpe 800 11 no no
fr 7→br generic 800 18 epoch 4 yes
br7→fr generic 800 18 epoch 4 yes
en 7→pt generic 800 18 epoch 4 yes
br7→en generic 800 18 epoch 4 yes
fr 7→it generic 800 18 epoch 4 yes
it7→fr generic 800 18 epoch 4 yes
fr 7→ar generic-crf 800 10 epoch 4 no
ar 7→fr crf-generic 800 15 epoch 4 no
fr 7→es generic 800 18 epoch 4 yes
es7→fr generic 800 18 epoch 4 yes
fr 7→de generic-compound splitting 800 17 epoch 4 no
de 7→fr compound splitting-generic 800 16 epoch 4 no
nl7→fr generic 800 16 epoch 4 no
fr 7→zh generic-word segmentation 800 18 epoch 4 no
ja 7→ko bpe 1000 18 no no
ko 7→ja bpe 1000 18 no no
en7→ko bpe 1000 17 no no politeness
fa7→en basic 800 18 yes no

Table 12: Parameters for online systems.


